CALCULATION OF THE TEMPERATURE FIELD OF A
BAR FOR HARDENING IN A WATER-COOLED
CRYSTALLIZING TANK

N, A, Avdonin, L, A, Volokhonskii, UDC 536.421.4
G, F, Ivanova, and A, L, Tsikerman

A mathematical model is given describing the heat field in vacuum-arc melting. A numerical
computational method is described and the results of actual computations on a digital computer
are given.

At the present time the industrial production of high quality metals by melting in a water-cooled crys-
tallizing tank is widely practiced. Very frequently vacuum-arc melting furnaces are used. The main out-
line of the process is shown in Fig.1,

Melting begins when the first drops of liquid metal fall on a layer of cold metal of given thickness
(the so-called templet). The metal drops also fall on the wall of the crystallizing tank and congeal on it,
forming with the condensate the so-called "corona." As the flowing electrode fuses, the bar grows and, as
a result of thermal shrinkage as it cools, it branches out from the wall, forming athermal gap, through
which radiative heat transfer occurs (the region I'y).

Under the mirror of the bath (T'y) and also at the water-cooled tray (') there is direct contact be-
tween the bar and the wall; heat transfer in these regions may be radiative or by thermal conductivity, In
this connection, it is more convenient for the ensuing discussion to assume that in this case the heat trans-
fer is determined by Newton's law with a certain equivalent-contact heat-transfer coefficient &,. The nu-
merical values of the heat-transfer coefficients oy and oy between the bar and the wall of the crystallizing
tank in the region I'y; and between the bar and thetray in the region Ty respectively were determined ex-
perimentally in the furnaces used by the method of separate calorimetric measurements and also by the
direct measurement of the wall temperature of the crystallizing tank,

Radiation occurs from the mirror of the liquid-metal bath (region I'st) in the gap between the wall
and the electrode and at the electrode, the temperature of the end of which can be taken as constant, equal
to Tg, In addition, the mirror of the bath absorbs part of the heat emitted in the arc,

The process of forming the bar is nonstationary, At the initial moment of fusion, when the cooling
effect of the tray is important, the liquid-metal lune is flat, As fusion continues the lune deepens until the
onset of quasistationary thermal conditions,

An important problem in the study of the formation of the bar is the determination of the thermal field
of the bar, and in particular, the position and shape of the crystallization isothermal, By studying the rela-
tion between the thermal field and the parameters of the process it is possible to make important conclusions
about the optimal course of the process.

But experimental measurement of the thermal field is almost unattainable because of the difficulty of
access to the working region of the furnace and the great complexity in the measurement of the femperature
of the liquid metal,

In formulating the problem we make the following assumptions:

1) the heat in both the solid and liquid phases is conducted only by thermal conductivity;
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Fig.1, Diagram of a vacuum-arc furnace: 1) test elec-
trode; 2) water-cooled crystallizing tank; 3) inter~
arc gap; 4) liquid-metal lune; 5) hardening metal; 6)
water-cooled tray.

Fig.2. The isothermal field in the bar after 25 min
melting: R = 0,095 m; Ty, = 1700°C; r, m; z, m, 1) T
= 500°C; 2) 700°C; 3) 900°C; 4) 1200°C; 5) 1570°C; 6)
1640°C; 7) 1700°C; 8) 1900°C; 9) 2100°C,

2) the rate v at which the bar fuses is constant;

3) at the boundary between the liguid and the solid phases liberation of the latent heat of crystalliza-
tion is taken into account (Stefan's condition);

4) at the boundaries between the bar and the crystallizing tank and also at the surface of the bath of
metal there is either heat exchange with the medium of known temperature or there is radiation,

Since the fused bar is cylindrical, we introduce a cylindrical coordinate system (r, z) with the origin
at the point of intersection of the axis of the bar and the tray, the z-axis being directed upwards and the r-
axis along the radius of the bar.

Let D; be the region determined by the conditions

D,={0<r «<R; 0<z<L+ut),

3
L, =2 Fis

i=0

(1)

where T' is the boundary of the system consisting of the following parts:
To={0<r<R; 2= 6},
Fy={r=R 0<z<L+vt—1}, (2)
Ty={r=R L+uv—I <z<<L+u},
Iy ={0<r<R; z=L-ut}.

The mathematical problem of determining the temperature field of the bar in the above physical pro-
cess can be formulated thus: it is required to find the temperature distribution function T (r, z, t) which is
the solution of the problem (3)-(6):

div ( B(T) grad T) = ¢ (T) p %Tt—‘—, P(r, €D, t>0, T(r, 2, &) #+ Try>» 3)
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Fig.3. Position of the crystallization isothermal Ty,

= 1700°C with time; R = 0,095 m; r, m; z, m, 1) t = 2,1
min; 2) 6.2 min; 3) 10.4 min; 4) 14,6 min; 5) 18,7 min;
6) 22.9 min; 7) 25 min,

Fig.4, Influence of the effective thermal conductivity
of the liquid-metal k, on the position of the erystalliza-
tion isothermal; R = 0,0435 m; r, m; z, m; the contin-
uous line refers to k = 250 keal/m -h . °C; the dotted to
k =25 keal/m -h.°C,

vo %Et’l + ([ (T) grad T], grad @) =0, T(r, 2, £) = Ty 4)
— k(D) % ~F(T), P(r, 9€T, (5)

n
Ty =To< Ty ©)

Here & (r, z, t) = 0 is the equation of the surface separating the liquid and solid phases; [grad T] is the dis~
continuity in grad T in passing through the surface &(r, z, t) = 0 and
g (T - T])’ P (r’ Z) e Fot’
80, [(T + 273)* — (T, + 273)4], P(r, 2 €Ty,
i oy (T —T3), P(r, 2€Ty,
l —q1+qz+q3! P(r’ Z)EP:”,

F(T) = 7

where the T; (i = 1,2, 3) denote the temperatures of the external media on the parts T, T'yt, I'yt of the bound-
ary.

The heat flow at the boundary I'y; comprises:

1) the heat from the component arc (30% of all power)

- 031U
= ; 8
G F, (8)
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2) the heat required to heat the drops of metal breaking away from the electrode at the superheat tem-
perature to the temperature T at the surface of the metal bath:

4’2=c?(:‘ T—T, _); 9)

3) the heat radiated from the mirror of the metal bath to the electrode and in the gap between the wall
of the crystallizing tank and the electrode,

€

o, (T + 273 — (T, + 273)%, O0<r< R.,,
4 = 2_ e o[( ) ( [ )] el (10)

80y (T + 273)*, Ryj<r<<R.

The problem (3)—(6); naturally, cannot be solved analytically because of the complexity of the boundary
conditions, and also because of the nonlinearity of Stefan's condition, Hence the problem is solved numeri-
cally on a digital computer,

The problem (3)-(8) is the three-dimensional Stefan problem, For similar problems Oleinik [1] and
Kamenomostskaya [2] have proved that there is a general solution and given a method for solving them nu-
merically. '

We make the change of variables

8§ — fk(s) ds (1

To

and, following Oleinik and Kamenomostskaya, we introduce the function

&
a@®) = { a(ds+pn (@0, (12)

0

where a = (cp/k); & = #(T,,); B = yp, and 7(x) is Heaviside's unit function,

I, x>0
)= ’ (13)
) {0, x<0,

and, using the smoothing method of Oleinik we replace the discontinuous function @ (%) by the differentiable
function a*(9):

8
a*(9) =f c* (s) ds, (14)
4
where
(@), 0< ¥ =19, —6,
O =1 T, p—o,<s,
@), 4, + 69,
p

S o —8+a® +9 + B
2 28

Here ($; — 8, ¢4 + 6) is the smoothing interval for a ().

Thus, we pass from solving the problem (3)-(6) to determining the generalized solution of the follow-
ing problem: :

P 1 P8 L.
T r 57—‘- oz ° ®) ot » P(r, )€ D,, t>0, (15)
—9 _r(r®), P D€y (16)
on
¥, =0. . (17)



For computational convenience we transform to nondimensional coordinates by putting

_’;..-yv—- z 'T——_t_'u=i 18

R’ L+ot’ s 8 18)
Here t* = (L* — L)/v, where L* is the finite length of the fused bar. Then conditions (15)-(17) can be re-
written as

X =

Pu ou - =~ u . Ou ou
a(x) P + b(x) Ex_+c(1) o +d, T, u)Ey——f(u) 50 0<x, gy, t<< 1, (19)
Gu| g ) _ 20
ol e @ (@)1 (20)
oul  _ ouwl  _ _ 21
3 o ¥ (1, T)ly=0, 3 lyms P (4, T)ly—v (@1)
Uy =0, (22)
where
L. x 0
(1, x#£0, 1 x ’
0; x=0,
) - R R .
O =g (0= (8 @),
_ uttyf () ___ R
A v )= 90 = — 5= FT@ @),
P, 9 =2EET P o ).

1

To solve the problem (19)-(22) numerically we use the Peaceman —Rachford method of separating the
two-dimensional problem into one-dimensional problems and solve the latter by one-dimensional trial runs.

We introduce a net with uniform steps 64, §,, §; in the variables x, y, T respectively and put
U (X Yy T) = u(idy, jO, kby) = u?,- .

We approximate Eq. (19) at time 7y +1/2) by the difference scheme

1 1 1 1 1
bt = PR PSS PRRE IS SR
a Upf? — 20y ° +u 7 +b(x) U — W]
& ' 26,
k £ k k &
+3f uii+1“‘2u2ii+uij—l Fdfy, T Uk Uijr — Wiy (23)
k+;—) 83 < e 7 ) 26,
1
u T
=f(uf])—i~6—”—, iZI, 2, P n—l, ]———1, 2, ceey m——l,
3
and at time 7y, by the scheme
1 1 1 1 1
Y S = PRI T
2 —2u, 2w 2 u, 2—u .2 . Wit oyt L i
a i1 i . 7 -+ b(xi) i+1j i—1j L c(‘rh+1) i+1 21 + i
& 26, &z
‘ po L (24)
1 ALkt 1 Bl
ket — Upjt1 Uij—1 ( B4 _) s ui.
+ d(yj, Ther Yy 2) “'—-62-‘_ =fl\u; * #—"gl—— s
i=1,2 ...,n—1,j=1,2, ..., m—1,
while we approximate the boundary conditions (20)-21) thus:
1 1
k= R —
Hy =ty 2, j=1,2 ..., m—1, (25)
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+p(x) [( T (0 () + 273) (T(ﬁ(ui;*%))um)s—q(x)]}a
Px, y) €Ty,

where the T'j; (i = 0,1,2, 3) denote the domains which the I'y; (i = 0,1, 2, 3) are transformed in passing to
nondimensional coordinates, while the functions

&

R
0< _—y
"R

2—-—8

px) R
180‘0, "“RS@—I<X<1,

el

{ .
| T, +273) 0<x <

q(x) =
R
0, —fl<x<l
i R

are introduced to simplify the notation,

We calculate the temperature fields for titanium and steel bars by the method indicated. In one of
the variants for titanium bars the following constants were used: R = 0.095 m, Re] = 0,06 m, I = 3.4 kA,
U=24V,L*=04m,7,=0.072 m, G = 87 kg/h, v = 0.684 m/h, L = 0,02 m, p = 4500 kg/m?, y = 100 keal
/kg, Ty = 1700°C, T = 1775°C, £jq = 0.4, €' = 0,7, & = 2000 kecal/m?.h- °C, @, = 850 kcal/m?-h - °C and

D) :{ 0.01475 T + 7.525, T<< T,
25, T>T
(1) = { 0.11 40.19-1073 T —0,1.107% T2, T << 1000 °C,
0.2, T > 1000 °C.

For this variant the isothermal field after 25 min melting is shown in Fig. 2 and the movement of the iso-
thermal T = Ty, as time passes is shown in Fig, 3.

An estimate of the value of the temperature of the metal bath can be obtained by putting the heat flow
through the boundary I'y equal to zero:

aT
—k(T)a— =—¢ 4+ ¢ +g; =0.
N (rs

Making the change of variable x' = (T +273)/100 and substituting the numerical value of the constant, we obtain we
obtain a fourth-order equation for x!, one of the roots of which is negative, two are complex and the fourth yields the
approximate value T =2200°C for the above variant, which agrees well with the results of the computer computation,

The results were also compared with thoge from the laboratory furnace, There was good agreement
with experiment in the calculation of the maximum temperature under the electrode and also in the depth
and shape of the liquid bath, Thus, the depth of the bath obtained from computations differed from that mea-
sured experimentally by 5-10%. The maximum bath temperature coincided to within 5%.
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The degree of approximation of the computed data to the experimental data depends not only on the
accuracy of the computations, but also on the accuracy with which the boundary conditions and the thermo-
physical constants are specified. The latter are usually measured during the experiment and are deter-
mined very approximately. The weakest point is the choice of the effective thermal conductivity of melting
since there is almost no information about this in the literature and experimental determination of the co-
efficient is virtually impossible due to the complex convective motion in the liquid region. To verify the
extent of the influence of the effective thermal-conductivity coefficient of the liquid metal on the tempera-
ture field of the bar, the problem was solved for a titanium bar with k between 25 and 250 kcal/m -h-°C,
Figure 4 shows the 1400°C and 1700°C isothermals for a bar of diameter 870 mm in steady state conditions
for k = 250 and 25 keal/m -h.°C, The position of the crystallization front (Ty, = 1700°C) varies little when
k increases by an order of magnitude, although the temperature field itself in the liquid metal varied in
such a way as to reduce the gradients. This makes it possible to say that some degree of convection in the
liquid bath has little effect on the crystallization front shape,

The variants were computed on a BESM-2 computer,

The computed results and also their comparison with experimental data show that the mathematical
model describing the fusion process in a vacuum-arc melting and the numerical method given can be used
to study the melting process.

NOTATION
Tm is the melting point;
Te is the electrode face temperature;
v is the melting rate;
R is the bar radins;
Rgl is the electrode radius;
L is the templet thickness;
lo is the height of contact zone;
k(T) is the thermal conductivity coefficient;
c(T) is the specific heat capacity;
P is the density;
v is the latent heat of melting;
gy is Boltzmann's constant;
£ is the degree of blackness;
a4, Qg are the heat transfer coefficients in I'yt and I'yt respectively;
I is the current;
U is the voltage;
Fy is the area of bath mirror;
G is the furnace output;
r,z,t, T are the dimensioned coordinates;
X,¥,T, U are the nondimensional coordinates,
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